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A B S T R A C T 

Background: Cervical lymphadenopathy is common in children with diverse causes varying from benign 

to malignant, their similar manifestations make differential diagnosis difficult. This study intended to 

investigate whether radiomic models using conventional magnetic resonance imaging (MRI) could classify 

pediatric cervical lymphadenopathy. Methods: A total of 419 cervical lymph nodes (LNs) from 146 

patients, belonging to four common causes (kikuchi disease, reactive hyperplasia, suppurative 

lymphadenitis and malignancy), were randomly divided into training and testing sets at a ratio of 7:3. For 

each LN, 1218 features were extracted from T2-weighted images. Then the least absolute shrinkage and 

selection operator (LASSO) model were used to select the most relevant ones. Two models were built using 

support vector machine classifier, one was to classify benign and malignant LNs and the other further 

distinguished four different diseases. The performance was assessed by receiver operating characteristic 

curves and decision curve analysis. Results: By LASSO, 20 features were selected to construct a model to 

distinguish benign and malignant LNs, which achieved an area under the curve (AUC) of 0.89 and 0.80 in 

the training and testing set respectively. Sixteen features were selected to construct a model to distinguish 

four different cervical lymphadenopathies. For each etiology (kikuchi disease, reactive hyperplasia, 

suppurative lymphadenitis and malignancy respectively), an AUC of 0.97, 0.91, 0.88 and 0.87 was achieved 

in the training set, and an AUC of 0.96, 0.80, 0.82 and 0.82 was achieved in the testing set. Conclusion: 

MRI-derived radiomic analysis provides a promising noninvasive approach for distinguishing cervical 

lymphadenopathy in children. 

 

 

                            © 2023 Lisu Huang, Weihui Yan & Caiting Chu. Published by World Journal of Surgery 

1. Introduction 

 

Pediatric cervical lymphadenopathy is a common clinical finding with 

diverse causes varying from benign to malignant. The lymphatic system 

undergoes rapid development during childhood and reaches its peak at 

puberty. Consequently, the lymph nodes (LNs) may enlarge under 

physiological conditions. It is reported that around 28% of healthy 

school children had palpable LNs in the neck. Furthermore, childhood is 

a stage at which respiratory tract infections are more likely to occur, 

cervical LNs would swell up in response to a bacterial or viral infection 

[2, 3]. Notably, head and neck malignancies account for 12% of all 

pediatric malignancies [4], common types include lymphoma, thyroid 

carcinoma, and metastatic nasopharyngeal carcinoma, with persistent 
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enlargement of LNs as an early warning sign [5, 6]. Other idiopathic 

cause like kikuchi disease, which shows a growing trend among asian 

children, is also characterized by enlarged cervical LNs with a benign 

and self-limiting process but is easily confused with lymphoma clinically 

and histologically [7].  

 

However, the differential diagnosis of pediatric cervical 

lymphadenopathy is quite challenging due to their overlapping 

nonspecific manifestations [8], pathological confirmation by biopsy is 

considered as the gold standard. Currently, there is still no consensus on 

indication and timing of biopsy; parents still tend to hesitate because of 

the invasive nature of the surgery, their concerns include the impact 

general anesthesia has on children’s developing brain, risk of incision 

infection and surgery costs.  

 

For this reason, noninvasive imaging tools are becoming more and more 

valued. With the advantage of superior soft tissue contrast, multi-angle 

scanning and no radiation damage, MRI might outperform ultrasound 

and computed tomography (CT) to some extent. Recently, MRI-based 

radiomics models have already been applied in the field of head and neck 

imaging, showing good performance in prediction of LN metastasis, 

extra-nodal extension status and outcome prediction in patients with 

malignancy [9-13]. To our knowledge, benign cervical 

lymphadenopathy was not covered in current MRI-based radiomics 

model, and studies on pediatric patients are lacking.  

 

Therefore, the aim of this study was to develop and validate radiomics 

models based on conventional MRI axial T2 scans to classify cervical 

lymphadenopathy in children.  

 

2. Materials and Methods 

2.1. Study Cohorts 

 

Ethical approval was obtained and the informed consent requirement 

was waived. All patients met the following inclusion criteria: i) aged 0-

18 years; ii) underwent neck MRI examination because of cervical 

lymphadenopathy; iii) with enlarged LNs with shortest diameter greater 

than 1.0 cm or largest diameter greater than 1.5 cm on axial images; iv) 

a histologically confirmed diagnosis. The exclusion criteria were as 

follows: i) poor image quality due to apparent motion artifacts; ii) 

previous treatment (such as radiotherapy, chemotherapy, interventional 

therapy, or LN biopsy surgery). Through consecutive enrollment, we 

found the most common causes were reactive hyperplasia, suppurative 

lymphadenitis, kikuchi disease and malignancy, then disease groups 

with very few patients (< 10 people) were eliminated. Ninety-two 

patients in hospital 1 were collected from January 2015 to August 2022 

and fifty-four patients in hospital 2 were collected from January 2017 to 

December 2022. The general clinical data of patients were collected 

from medical records. 

 

2.2. MRI Technique and Post-Processing 

 

MRI data were acquired on three 3.0T MR scanners (Siemens, Philips, 

or GE medical systems) using a 64-channel head and neck coil on axial 

T2-weighted sequences. The scanning parameters were shown in 

(Supplementary Material). To reduce the bias caused by the variability 

of imaging parameters and scan conditions of different MRI machines, 

all images were resampled into 1×1×1 mm3 and z-score normalization 

was used to eliminate the batch effect before radiomics feature 

extraction. 

 

2.3. Segmentation and Feature Extraction 

 

The volume of interests (VOIs) were manually and independently 

segmented using ITK-SNAP (Version 3.8.0) by two radiologists (with 2 

and 8 years of experience respectively) who were blinded to pathologic 

diagnosis and clinical information. VOIs were determined along the 

border of LN on each consecutive slice and then reconstructed in a three-

dimensional way. When LNs were fused in an ill-defined mass, it was 

considered as a single VOI. Twenty VOIs were randomly selected to test 

reproducibility between radiologists. Intra-class correlation coefficients 

were calculated to assess the robustness of the radiomic features. 

Excellent consistency was defined as an intraclass correlation coefficient 

greater than or equal to 0.75. 

 

For each VOI, a total of 1218 radiomics features were extracted using 

pyradiomics (Link 1) which is an open-source python package that 

adheres to the IBSI guidelines [14]. The extracted features can be divided 

into four sets: i) first-order statistics; ii) shape-based (2D, 3D) features; 

iii) texture features including gray-level co-occurrence matrix (GLCM), 

gray-level size zone matrix (GLSZM), gray-level dependence matrix 

(GLDM), and gray-level run length matrix (GLRLM); iv) higher-order 

features using laplacian of gaussian  filter (sigma=2.0, 3.0, 4.0 and 5.0 

mm) and wavelet transform filter with all possible combinations of high 

(H) or low (L) pass filter in each of the three dimensions (HHH, HHL, 

HLH, LHH, LLL, LLH, LHL, HLL). 

 

2.4. Feature Selection and Model Building 

 

The VOIs were randomly assigned to training (70%) or testing dataset 

(30%). Considering the imbalance of the disease type, synthetic minority 

over-sampling technique was used to synthesize new minority samples 

to get a balanced dataset. Then features with spearman correlation 

coefficients larger than 0.75 were excluded to eliminate redundant 

features. Next, one-way analysis of variance was carried out to select 

statistically significant variables (p < 0.05). Then the least absolute 

shrinkage and selection operator logistic regression (LASSO) was used 

to select the most useful predictive features from the remaining features. 

In order to avoid potential bias, the optimal penalization coefficient 

lambda (λ) was set by ten-fold cross-validation. Radiomics features with 

non-zero coefficients were finally selected to construct a radiomics 

signature (Rad-score) which was calculated using a linear combination 

of selected features and their coefficients. 

 

Two MRI radiomics models were constructed based on the linear-

support vector machine. Model 1 was to classify benign and malignant 

LNs by one-versus-one approach. Model 2 was to further distinguish 

kikuchi disease, reactive hyperplasia, suppurative lymphadenitis and 

malignancy by one-versus-rest approach. Figure 1 displays the whole 

workflow of the study. 

 

 

 

https://pyradiomics.readthedocs.io/en/latest/
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FIGURE 1: Workflow of the study. A) VOIs were manually segmented on axial T2-weighted neck MR images for radiomic analysis. B) A total of 1218 

radiomics features were extracted and then the most relevant features were selected. C) In the model development phase, SVM, a linear classifier, was used 

to build two radiomics models. D) The performance of models was evaluated and its clinical utility was displayed. 

GLCM: Gray Level Co-occurrence Matrix, GLDM: Gray Level Dependence Matrix, GLRLM: Gray Level Run Length Matrix, GLSZM: Gray Level Size 

Zone Matrix, LASSO: Least Absolute Shrinkage and Selection Operator, LoG: Laplacian of Gaussian, ROC: Receiver Operating Characteristic, SVM:  The 

Support Vector Machine, VOI: Volume of Interest. 

 

2.5. Statistical Analysis 

 

Statistical analysis was performed using R software version 4.1.3 (Link 

2). Common comparisons of patient characteristics were conducted by 

one-way analysis of variance or Mann-Whitney U test for continuous 

variables. Pearson’s chi-squared test or Fisher’s exact test was used for 

categorical variables. The performance of models was quantified by the 

area under the curve (AUC) of receiver operating characteristic curves, 

accuracy, sensitivity, specificity. For the calculation of AUC in multi-

class problems, each class was treated as the positive class and the other 

classes were treated as the negative class. Then, the average of the AUC 

scores for each class was taken. Decision curves were constructed to 

evaluate the potential net clinical benefits. All the levels of statistical 

significance were two-sided, and P-values < 0.05 were considered 

statistically significant. 

 

3. Results 

3.1. Demographic and Clinical Characteristics 

 

A total of 419 enlarged LNs were detected in 146 patients (89 boys, 57 

girls; with mean age of 8.2±3.8 years) in this retrospective study. Of all 

LNs, 147 were pathologically diagnosed as kikuchi disease, 131 were 

reactive hyperplasia, 44 were suppurative lymphadenitis and 97 were 

malignancy. Profiles of patients are given in (Table 1). 

 

TABLE 1: Demographics and clinical characteristics of patients. 

 Kikuchi disease 

 (n=43) 

Reactive hyperplasia 

(n=49) 

Suppurative 

lymphadenitis (n=25) 

Malignancy 

(n=29) 

Total 

(n=146) 

p 

Age (mean ± SD) 10.1± 2.9 6.6 ± 3.5 5.7 ± 4.0 10.2 ± 2.9 8.2 ± 3.8 <0.001 

Gender      0.014 

Male (n, %) 26 (60.5) 25 (51.0) 13 (52.0) 25 (86.2) 89 (61.0)  

Female (n, %) 17 (39.5) 24 (49.0) 12 (48.0) 4 (13.8) 57 (39.0)  

Fever (n, %) 41 (95.3) 35 (71.4) 20 (80.0) 7 (24.1) 103 (70.5) <0.001 

Fever over 2 weeks (n, 

%) 

15 (34.9) 5 (10.2) 2 (8.00) 1 (3.45) 23 (15.8) 0.001 

 

Number of  

enlarged LNs (n, %) 

147 (35.1) 131 (31.3) 44 (10.5) 97 (23.1) 419 (100)  

Sites of enlarged LNs       <0.001 

Unilateral (n, %) 7 (31.8) 7 (20.0) 14 (100.0%) 11 (50.0) 39 (41.9)  

http://www.r-project.org/
http://www.r-project.org/
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Bilateral (n, %) 15 (68.2) 28 (80.0) 0 (0.0%) 11 (50.0) 54 (58.1)  

LN tenderness (n, %) 34 (79.1) 24 (49.0) 20 (80.0%) 11 (37.9) 89 (61.0) <0.001 

LN heat sense (n, %) 4 (9.30) 4 (8.16) 7 (28.0%) 0 (0.00) 15 (10.3) 0.010 

WBC counts (109/L) 5.5 (3.7-10.2) 3.8 (3.0-4.3) 6.7 (5.8-12.6) 15.7 (10.4-19.9) 5.5 (5.4-6.9) <0.001 

NE counts (109/L) 2.4 (1.6-6.3) 1.6 (1.3-2.3) 2.6 (1.7-7.4) 9.7 (7.3-13.3) 2.9 (2.1-3.9) <0.001 

Neutropenia (n, %) 15 (34.9)  7 (14.6)   1 (4.00)  1 (3.57)  24 (16.7)   0.001 

CRP (mg/L) 

[median (IQR)] 

8.0 (2.0-15.0)    7.0 (1.3-45.7)   21.0 (9.8-51.0)  4.0 (1.0-15.2)    8.0 (2.0-25.0)   0.006 

ESR (mm/h) 

[median (IQR)] 

32.5 (23.8-45.0)    35.0 (16.0-77.2)   50.0 (34.5-57.8)   10.0 (8.0-63.0)   38.5 (20.8-

55.5)    

0.284 

CRP: C-reactive Protein, ESR: Erythrocyte Sedimentation Rate, IQR: Interquartile Range, LN: Lymph Node, NE: Neutrophil, SD: Standard Deviation, 

WBC: White Blood Count. 

 

3.2. Distinguishing Benign and Malignant LNs 

 

A good inter-observer agreement was observed with the interclass 

correlation coefficient of all the radiomics features were greater than 

0.75. Model 1 was built on a basis of 322 benign nodes and 97 malignant 

nodes. After data reduction, 20 features were finally selected to construct 

the model by LASSO (Figure 2). Of those, 2 were shape features, 2 were 

texture features and the rest 16 were all high-ordered features. The 

selected features and their corresponding weights are presented in 

(Figure 3). Of those features, log sigma 5.0 mm 3D glcm Imc1 was 

ranked as the most important. The detailed interpretation of these 

features and a Rad-score calculation formula were presented in 

(Supplementary Material).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2: Radiomics feature selection using the LASSO regression model. A) The binomial deviance curve was plotted versus log (λ). Dotted vertical 

lines were drawn at the optimal values by using the minimum criteria and the 1 standard error of the minimum criteria (the 1-SE criteria). The optimal values 

of the LASSO tuning parameter (λ) are indicated by the dotted vertical lines, and a λ value of 0.00866390, with log (λ), -4.75 was chosen. B) LASSO 

coefficient profiles of the 1218 radiomics features. A coefficient profile plot was produced against the log (λ) sequence. Vertical line was drawn at the value 

selected using 10-fold cross-validation, where optimal λ resulted in 20 nonzero coefficients. 
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FIGURE 3: The selected features to classify benign and malignant cervical LNs and their corresponding weights. 

 

There was a significant difference of Rad-score between benign and 

malignant LNs in the training set (-2.80±2.46 vs 0.32±1.20, p < 0.001), 

and then confirmed in the testing set (-2.36±2.54 vs 0.24±1.98, p < 

0.001). Malignant LNs generally had higher scores (Figure 4). Excellent 

performance was observed with an accuracy of 0.81(95% CI 0.76-0.85) 

and an AUC of 0.89 ((95% CI 0.86-0.93) in the training set, and accuracy 

of 0.70 ((95% CI 0.62-0.78) and AUC of 0.80 ((95% CI 0.71-0.89) in 

the testing set. Table 2 summarizes all the classification results including 

the sensitivity, specificity, positive predictive value, and negative 

predictive value in distinguishing benign and malignant LNs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4: Distribution of the Rad score of benign and malignant LNs and the corresponding performance in the training and testing sets.  A) Rad score of 

benign and malignant LNs in the training group. B) ROC curve of the rad score in the training set. C) Rad score of benign and malignant LNs in the testing 

group. D) ROC curve of the Rad score in the testing set. 
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TABLE 2: Performance of the radiomics model for the classification of benign and malignant cervical LNs. 

 Accuracy(95%CI) Sensitivity (%) Specificity (%) 
Positive predictive 

value 

Negative predictive 

value 

Training set 0.81(0.76-0.85) 0.86 0.79 0.62 0.93  

Testing set 0.70 (0.86-0.93) 0.71 0.70  0.44 0.88 

 

Decision curve analysis was performed to assess the clinical usefulness 

of model 1. Figure 5 showed that across the majority of the range of 

reasonable threshold probabilities, using model 1 to classify benign and 

malignant LNs would add more benefit than the treat-all-patients scheme 

or the treat-none scheme. For instance, if the threshold probability is 

50% (in other words, the doctor would choose biopsy if the probability 

of malignancy was above 50%), then the net benefit is 0.41, with more 

than the treat-all scheme or the treat-none scheme, implying that a 

proportion of patients could benefit from this model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5: Decision curve analysis for the classification of benign and malignant cervical Ln. The x-axis represents the threshold probability. The threshold 

probability is where the expected benefit of treatment is equal to the expected benefit of avoiding treatment. The y-axis represents the standardized net 

benefit. The green line represents the assumption that all enlarged LNs were malignant. The blue line represents the assumption that all enlarged LNs were 

benign. The red line represents the radiomics model. 

 

3.3. Distinguishing Four Different Etiologies of LNs 

 

Model 2 was established on a basis of 147 kikuchi diseases’ LNs, 131 

reactive LNs, 44 suppurative LNs and 97 malignant LNs. Finally, the 16 

most useful features were retained by LASSO including 1 first-order 

feature, 1 shape feature, 6 texture features and 8 higher-order features 

(Figure 6). For distinguishing each etiology (kikuchi disease, reactive 

hyperplasia, suppurative lymphadenitis and malignancy respectively), 

an AUC of 0.97, 0.91, 0.88 and 0.87 was achieved in the training set, 

and an AUC of 0.96, 0.80, 0.82 and 0.82 was achieved in the testing set. 

Radiomics features yielded the highest AUC value for the differentiation 

of kikuchi disease from the other three etiologies both in the training and 

testing sets (Figure 7). Other detailed performance was shown in (Table 

3).  
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FIGURE 6: The selected features to classify four different cervical LNs and their corresponding weights. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 7: ROC curves of the classification of four different types of cervical LNs. A) The ROC curves in the training set. B) The ROC curves in the 

testing set. 

Class 0 represents Kikuchi disease; Class 1 represents reactive hyperplasia; Class 2 represents suppurative lymphadenitis; Class 3 represents malignancy. 

 

TABLE 3: Performance of the radiomics model for the classification of four different types of cervical LNs. 

 Training set Testing set 

 
Kikuchi 

disease 

reactive 

hyperplasia 

suppurative 

lymphadenitis 
malignancy 

Kikuchi 

disease 

reactive 

hyperplasia 

suppurative 

lymphadenitis 
malignancy 

Accuracy(95%CI) 

0.93 

(0.90-

0.96) 

0.85 

(0.80-0.89) 

0.81 

(0.76-0.86) 

0.81 

(0.73-0.88) 

0.91 

(0.85-0.95) 

0.69 

(0.60-0.77) 

0.64 

(0.55-0.72) 

0.78 

(0.73-0.83) 

Sensitivity (%) 0.96 0.90 0.83 0.85 0.88 0.61 0.59 0.83 

Specificity (%) 0.92 0.83 0.81 0.77 0.98 0.87 1.00 0.69 
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4. Discussion 

 

In this study, we preliminarily explored the feasibility of distinguishing 

pediatric cervical lymphadenopathy based on MR images. Two 

radiomics models were developed. Good performance was shown not 

only in distinguishing malignant from benign LNs (an AUC of 0.80 in 

the testing set), but also in distinguishing four different types of LNs (an 

AUC of 0.96, 0.80, 0.82, 0.82 in the testing set respectively). Especially, 

our model demonstrated a significant advantage on identifying kikuchi 

disease. This would be a promising noninvasive tool to assist the 

evaluation of cervical lymphadenopathy. 

 

In routine clinical practice, radiologists use semantic characteristics to 

distinguish pathologic from benign LNs: size, shape, borders, clustering, 

and internal heterogeneity. Information provided is still limited and may 

influenced by viewer’s naked eyes. Radiomics, a high-throughput 

approach that extracts quantitative features from images and transforms 

them into mineable data [15], is independent from viewer’s experience 

and can dig out more subtle characteristics. Traditionally, size and shape 

are the most common criterion, a larger and rounder LN tends to be 

abnormal, however this may not be appliable to children as their LNs 

undergo physiologically hyperplasia. In a recent study of normal 

children, identifiable LNs in the head and neck were calculated and a 

mean of the short axis greater than 10 mm was reported [16]. Therefore, 

it may be more reliable to judge by its shape. However, the present 

measurement of shape is determined by a ratio of short and long axis, the 

result may vary with planes. In our study, the feature original shape 

sphericity was an important feature to classify benign and malignant 

LNs. By measuring how round the LN is in three-dimensional way, we 

were able to have a comprehensive understanding from the overall 

perspective rather than a single maximum section. 

 

In addition, the feature log sigma 5.0 mm 3D glcm Imc1 had the highest 

impact on classification of benign and malignant LNs and original glcm 

Imc1 had the highest impact when classify kikuchi disease from the other 

three cervical lymphadenopathies. This is a reasonable finding as texture 

features have been known to measure internal heterogeneity and explain 

the spatial interdependence or cooccurrence of information between 

adjacent voxels [17]. GLCM is used to describe the joint distribution of 

two neighboring pixel gray scales with spatial location relationship. 

Imc1 is one of GLCM features that quantifies the complexity of the 

texture. Generally, greater complexity in heterogeneity implies a greater 

likelihood of malignancy, but for kikuchi disease, whose characteristic 

is varying degrees of necrosis with abundant karyorrhectic debris in 

paracortical areas, such intranodal necrosis is microscopic that often not 

apparent enough to be recognized by radiologists. In a CT characteristic 

analysis, nodal necrosis was reported in only 16.7% of patients with 

kikuchi disease [18], and in another MRI finding, necrosis which was 

shown in a hypointense manner on T2-weighted images was found in 

less than half kikuchi disease patients [19].  

 

Moreover, our results partially confirmed the difficulty of visual 

identification by radiologist, for most of selected features belonging to 

high-order features. There is evidence that preprocessing filters can 

further decouple texture features [20]. By changing the ratio of signal 

frequency, wavelet filters could reduce the noise and achieve compact 

feature representation ,acting as an edge enhancement tool to emphasize 

areas of gray level changes [21], where a higher sigma value represents 

coarser textures, in other words, gray level changes over a larger 

distance. Our findings showed the subtle distinctions between LNs that 

can only be distinguished by de-noising and enhancing filters. With the 

help of our model, we can make up for the inadequacy of traditional 

reading. 

 

Previous studies mainly focused on US images. Liu et al. developed a 

multiclass US-based radiomics model to classify LN tuberculosis, 

lymphoma, reactive and metastatic LNs with an AUC of 0.673, 0.623, 

0.655 and 0.708 for each disease [22], and Zhu et al. built a hierarchical 

diagnosis model via deep residual network algorithm based on dual-

modality US images (B-mode US and color Doppler flow imaging) [23]. 

There are also studies demonstrated the utility of CT-based radiomics 

classifier [24-26]. However, in most studies only one representative 

image was chosen and single-section of region of interest for each patient 

was segmented which resembles core needle biopsy that may not allow 

for a comprehensive profile of the entire LN. The strength of our study 

is VOIs ware manually drawn slice-by-slice at the entire LN’s boundary 

which carry more texture information.  Therefore, we have a significant 

advantage in identifying kikuchi disease which has variable degrees of 

necrosis inside LNs. 

 

The study has a few limitations. First, the retrospective nature may 

introduce selection biases. Second, suppurative lymphadenitis had 

difficulty in segmentation due to extensive diffusion on images, resulting 

in suboptimal accuracy in testing set. But, the prominent clinical signs 

of suppurative lymphadenitis like heat sense can make up for model’s 

shortcomings. Third, the lack of independent testing cohort raised a 

concern regarding potential generalizability of the proposed model, thus 

multicenter studies with larger patient numbers are required for further 

validation.  

 

5. Conclusions 

 

In summary, this study reveals that MR images contain much useful 

information which could be used in the classification of pediatric 

cervical lymphadenopathy. Our models may be promising noninvasive 

tools used as virtual biopsy, which is beneficial for early diagnosis. 
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